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Abstract This paper is the second in a series of two. The first paper has been devoted
to the detailed explanation of the mathematical formulation of the underlying theo-
retical framework. Specifically, the first paper shows that it is possible to construct
an infinite linear ODE set, which describes a probabilistic evolution. The evolution
is probabilistic because the unknowns are expectations, with appropriate initial con-
ditions. These equations, which we name, Probabilistic Evolution Equations (PEE)
are linear at the level of ODEs and initial conditions. In this paper, we first focus on
the phenomenological reasoning that lead us to the derivation of PEE. Second, the
aspects of the PEE construction is revisited with a focus on the spectral nature of the
probabilistic evolution. Finally, we postulate fruitful avenues of research in the fields
of dynamical causal modeling in human neuroimaging and effective connectivity anal-
ysis. We believe that this final section is a prime example of how the rigorous methods
developed in the context of mathematical chemistry can be influential in other fields
and disciplines.
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1 Introduction

In the first paper in this series, we show that an infinite set of ODEs with linear initial
conditions can characterize the evolution of the expectation values for the elements in
a set of basis operators [1]. We call these equations “Probabilistic Evolution Equations
(PEE)”. The first paper is focused on the comprehensive description of the construction
of PEEs. We also incorporated the utility of considering mathematical fluctuations in
the initial conditions that accompany the PEE.

Our intuition for the PEE is based on a number of insights that are part of widely
researched areas such as quantum dynamics and nonequilibrium statistical dynamics
as proposed and developed by Liouville. In our earlier works we have explored cer-
tain relationships that subtend the theoretical framework described in the first paper
[2–6]. We will not go into the details of these items here, however we incorporate the
intuition that guided our earlier work into the section of the paper where we discuss
applications of this approach in the areas of dynamic causal modeling in neuroscience.
In fact, we devote two sections to the PEE and its spectral nature as well as its potential
applications in dynamical causal modeling in neuroscience.

This paper is organized as follows. The second section covers the phenomenolog-
ical intuition underlying the work. The third section focuses on various practical and
methodological issues in PEEs. The fourth section describes how PEE can be applied
to dynamical causal modeling as it is used in neuroscience. The fifth section finalizes
the paper with concluding remarks.

2 Phenomenological reasoning

One of our biggest sources of inspiration comes from the concept of measurement.
Scientific discovery based on empirical research relies on information obtained from
objects and events that take place in the world. Measurement gathers information by
using two basic components: the device that measures the observables and the infor-
mation carrying agent. The device often has a number of limitations. Take the human
visual system for instance. An electron is too small for the resolution with which the
human eye obtains information from the world. On the other hand, the spherical shape
of the earth is also not noticable by the human that is not sufficiently elevated from the
earth’s surface. In this sense, the sensitivity of the human visual system can be char-
acterized by an interval ranging from milimeter to tens of kilometers. Extending this
analogy, it can be intuitively said that a device is capable of capturing representative
information only if the observables can be distinctly conceptualized and differenti-
ated within its sensitivity interval. Otherwise, information loss is bound to happen.
This loss of information will manifest itself as uncertainty. In fact, since there is no
measurement device which has an infinite interval of sensitivity, uncertainty is bound
to appear at some aspect of the measured information. The key issue is whether this
uncertainty influences the process of scientific discovery and inference.

The device cannot gather information in isolation and by itself. It needs an informa-
tion carrying agent. In the case of the human visual system, or any other visual device
such as a microscope, the information is carried by light and therefore photons. In the
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case of the electron microscope and the radio telescope, the information carrying agent
is the electron and the radio wave. It is easy to see that, the information carrying agent
has a significant influence on the sensitivity of the measurement device that relies on
it. It is important to emphasize that the information carrying agent can actually have
more information than the device that relies on it. For instance, the photons that fall on
the human retina might actually contain more information than what the human visual
system makes of them. In this sense, the information transferred during the action of
measurement depends on the interplay between the information carrying agent and
the measurement device.

It is also important to consider the source of the information and the way in which it
interacts with the measurement device and the information carrying agent. Let’s take
two hypothetical cases. In the first case, the information source generates the carrying
agent. Following our analogy of the human visual system, it is easy to see that a light
bulb is both a source of information and the generator of the information carrying
agent when the individual is observing it. In the second case, the information carrying
agent is generated by another source, but the measurement device is sensitive to how
that particular agent interacts with the source of information. Following our example
of the human visual system, this would be perception of a rock. The information car-
rying agents, in this case photons, are generated by the sun. The measurement device
measures the way in which these photons reflect off the surface of the rock. We can
extend this analogy further to give you an even better idea of the source of uncer-
tainty. Consider a blind individual who is using braille in order to obtain information
about the world surrounding him or her. In this case, every act of tactile sensation
involves touching a particular object, therefore potentially changing its unperturbed
state. It is easy to see how the uncertainty information depends on a number of factors.
The important issue is the degree to which the observers and the agents interact with
each other. Furthermore, if there is drastic size differences between the agents and the
observers, the interactions might be too minute to be noticed. For instance a macro
level observer might not be able to sensitively observe the interaction of two or more
micro (at a level that cannot be perceived) systems. All measurements contain some
level of uncertainty. The goal of strong inference in science is to advance theoretical
development such that these uncertainties can be estimated.

The realm of quantum phenomena is rife with such examples of uncertainty. Let us
itemize some of these below:

1. The position and momentum of an electron can not be precisely and simulta-
neously observed. This is due to the uncertainty principle of Heisenberg and
minimum uncertainty is determined by Planck’s universal constant.

2. The situation in (1) is not the only example. There are some property pairs whose
values can not be precisely known at the same time instant. The pair of time and
energy is one of the other examples to this.

3. There is a deviation in the expectation value of an observable square from the
square of the expectation value of the same observable itself. This is fluctuation
and does not exist in classical mechanics.

4. The deviation in (3) decreases as the physical dimension of the particle increases
towards macro levels.
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5. It is not possible to define a precise orbit for particles as done in classical mechan-
ics. There is no simple trajectory for them. Instead, the probability of residing in
some spatial region emerges. This description corresponds to a pulsing probability
cloud.

6. Sufficiently small particles can produce interference patterns under certain appro-
priate conditions. This is due to wave-particle duality which dictates that the con-
sidered particle behaves as a wave or a solid structure depending on the nature of
the event concerned.

It is also important to consider properties of systems that emerge from interactions
between populations of subsystems. For example, it is very well known that a given
amount of gas spontaneously and homogeneously fills a closed and empty vessel. In
this case, the population is at the level of Avogadro number and makes the tracing of
individual molecules impossible. Often this feature of the system leads to uncertainty.
However, it is feasible to consider the whole system as a unitary object or a collection
of a few objects by using statistical and probabilistic approaches. These kinds of events
are called “Stochastic Processes”and the systems are named “Stochastic Systems”and
rely heavily on probability theory. Another example of a stochastic process can be
taken from physics. When an empty container is being filled with a gas, after a certain
period of time, the same amount of pressure is exerted on all points of the container.
This emergent equivalence can only be explained using probabilistic considerations.

Neuroscience is also rife with examples of such emergent processes. Take the exam-
ple of the experience of emotion for instance. An experience of happiness might be
subtended by a myriad of different activation patterns in the human brain [7]. In some
cases, there is a focus on the pleasant scenery or scent that is perceived. In other cases,
a subtle memory that is spontaneously recalled can bring our mind to a pleasant state.
Experiences are constructed as multiple brain systems interact. One experience can
be subtended by multiple brain states and a brain state can be associated with multiple
experiences depending on the context in which they take place. For instance, simply
hearing gossip about an individual is sufficient to change the basic way in which that
individual’s face is perceived [8]. In fact, dynamical causal modeling of interactions
between brain systems have been used for investigating topics such as these.

3 Spectral and other important aspects of probabilistic evolution

Consider a dynamical system whose evolution can be given by the following ODEs
and initial conditions

ẋi = fi (x1(t), . . ., xn(t)) , xi (0) = xi , i = 1, 2, . . ., n (1)

The evolution operator (Hamiltonian) for this system is defined as follows

̂E =
∑

j=1

1

2

{

f j (̂x1, . . ., x̂n) p̂ j + p̂ j f j (̂x1, . . ., x̂n)
}

(2)
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where x̂ j and p̂ j stand for the position and momentum operators respectively. The
position operator (say x̂ j ) multiplies its operand by the relevant scalar independent
variable (x j ) while the j th momentum operator is related to differentiation with respect
to x j as follows

p̂ j ≡ −i
∂

∂x j
, j = 1, 2, . . .n (3)

We may define the ξi (t) function as the expectation value of the operator x̂i as follows

ξi (t) ≡ 〈̂xi 〉 (t) ≡
∞

∫

−∞
dx1. . .

∞
∫

−∞
dxnψ

∗ (x1, . . ., xn, t) x̂iψ (x1, . . ., xn, t)

i = 1, 2, . . ., n (4)

where ψ (x1, . . ., xn, t) stands for the wave function satisfying the following partial
differential equation

i
∂ψ (x1, . . ., xn, t)

∂t
= ̂Eψ (x1, . . ., xn, t) (5)

Note that it is not necessary to solve this PDE because the wave function is never
explicitly used in this framework. As we describe in the companion paper, the follow-
ing equality can be written for the time derivative of ξ(t)s

ξ̇ j (t) = (

ψ(t),
{

i
[

̂Ex̂ j − x̂ j ̂E
]}

ψ(t)
)

, j = 1, 2, . . ., n (6)

Now, by appropriately using (2) in this equality, it is not hard to see that the following
equalities hold

ξ̇ j (t) = 〈

f j (̂x1, . . ., x̂n)
〉

(t), j = 1, 2, . . ., n (7)

If we consider the following Maclaurin expansion of f j

f j (̂x1, . . ., x̂n) =
∞
∑

k1=0

· · ·
∞
∑

kn=0

f ( j)
k1,...,kn

ôk1,...,kn , ôk1,...,kn ≡ x̂ k1
1 x̂ k2

2 . . .̂x
kn
n ,

j = 1, 2, . . ., n (8)

then, from (7), we can write

ξ̇ j (t) =
∞
∑

k1=0

· · ·
∞
∑

kn=0

f ( j)
k1,...,kn

ηk1,...,kn (t), ηk1,...,kn (t) ≡ 〈

ôk1,...,kn

〉

(t),

j = 1, 2, . . ., n (9)
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which urges us to construct an ODE for ηk1,...,kn (t). To this end we can trace the same
route we have used above and get

η̇k1,...,kn (t) = 〈

˜fk1,...,kn (̂x1, . . ., x̂n)
〉

(t), j = 1, 2, . . ., n (10)

where

˜fk1,...,kn (x1, . . ., xn) ≡
n

∑

j=1

k j xk1
1 . . .x

k j−1
j−1 x

k j −1
j x

k j+1
j+1 . . .x

kn
n f j (x1, . . ., xn) (11)

and we can use the following Maclaurin expansion

˜fk1,...,kn (x1, . . ., xn) =
∞
∑

�1=0

· · ·
∞
∑

�n=0

Ek1,...,kn;�1,...,�n x�1
1 . . .x

�n
n (12)

which implies

˜fk1,...,kn (̂x1, . . ., x̂n) =
∞
∑

�1=0

· · ·
∞
∑

�n=0

Ek1,...,kn;�1,...,�n ô�1,...,�n (13)

whose utilization in (10) gives

η̇k1,...,kn (t) =
∞
∑

�1=0

· · ·
∞
∑

�n=0

Ek1,...,kn;�1,...,�nη�1,...,�n (t) (14)

and the initial conditions

ηk1,...,kn (0) = xk1
1 . . .x

kn
n , k1, . . ., kn = 0, 1, 2, . . . (15)

Ek1,...,kn;�1,...,�n coefficients can be generated from the f ( j)
k1,...,kn

coefficients through
(11) and (8) by using the Cauchy product formula for series multiplications. (14) and
(15) describe the initial value problem of the infinite linear ODE we call “Probabilistic
Evolution Equation (PEE)”. ηk1,...,kn (t) stands for an n-way array (multilinear array).
Its indices play the role of the column index of an ordinary linear algebraic vector.
It is possible to convert it to a one-index array, or in other words, a vector, by using
“Unfolding”. This urges us to call ηk1,...,kn (t) “Folded Vector”or simply “Folvec”.
Its time dependence urges us to use a more appropriate terminology and we can say
“Folvec Valued Function”. We are going to denote this folvec by η(t) in shorthand
notation as we do for vectors and matrices in ordinary linear algebra.

We can analogously call the multilinear array Ek1,...,kn;�1,...,�n “Folmat” since its
k1, . . ., kn and �1, . . ., �n indices respectively play the role of row and column indices
of a matrix in ordinary linear algebra. We denote this folmat by E.
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We are going to use η(t) and E to refer to folded and unfolded forms depending on
our needs. Now we can write the PEE as follows

η̇(t) = Eη(t), η(0) = x (16)

where the folvec x is composed of given initial values. (16) can be conceptualized via
matrices and vectors of ordinary linear algebra. It can also be considered in terms of fol-
mats and folvecs or under a more general multilinear algebraic name “Folarr”s (Folded
Arrays, Multilinear Arrays). In each case slightly different but parallel interpretations
can be made. We call the linear algebraic case discussions “Ordinary Interpretation”
while the other case will be called “Folarr Interpretation”.

Let us focus on the ordinary interpretation for this portion. It is better to use finite
truncations of (16) from left uppermost part to efficiently handle infinity. We can write

η̇m(t) = Emηm(t), ηm(0) = xm (17)

where the nonnegative integer m stands for the truncation order. If the algebraic and
geometric multiplicities of all eigenvalues are the same, then the following spectral
decomposition for Em can be written.

Em =
m

∑

i=1

ϕi ri l
†
i (18)

where ϕs, ls and rs represent the eigenvalues, left and right eigenvectors respectively.
There are as many eigenvalues as their multiplicities. Each pair of eigenvectors is
mutually normalized to make the corresponding outer product a projection matrix.
Hence r†

i li = 1 The dagger symbol stands for the Hermitian conjugation operation.
In the case where certain multiple eigenvalues’ algebraic and geometric multiplicities
differ, sufficiently many Jordan blocks should be added to the right hand side of (18).

Now the solution of (17) can be written as follows

ηm(t) = etEm xm =
m

∑

i=1

(

l†i xm

)

eϕi t ri (19)

which corresponds to the case where Jordan blocks do not exist. The form that contains
Jordan blocks has a similar structure but it also includes some terms which include
exponential times t powers. This is an explicit result in terms of spectral entities. We
call the set ϕs “Probabilistic Spectrum” of the dynamical system under consideration
while the left and right eigenvectors of Em are named “Evolutionary Basis Vectors
” of the same dynamical system. Within this philosophy we call E and Em “Evolu-
tion Matrix” and “Truncated Evolution Matrix” of the considered dynamical system.
What we have presented above has been in fact the spectral properties of the Truncated
Evolution Matrix. It is possible to analyze the stability of this probabilistic evolution,
however considering the well established nature of theory on linear ODE sets, we will
be skipping it here.
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The PEE in (16) is unique for the starting functional structure of the original ODE
set defined through f functions. However it is always possible to convert x variables
to some other coordinates as long as the conversion’s Jacobian Matrix remains nonsin-
gular. A different PEE appears for the new coordinates such that the Evolution Folmat
has a more appropriate structure to handle the equations for numerical purposes. The
effect of such a coordinate transformation on the spectrum of the evolution folmat
is an important issue worth investigation. We may expect that this spectrum remains
unchanged under such transformations.

One other important issue here is the case where m goes to infinity. As long as the
spectrum remains discrete, everything seems to be nonproblematic. However it is a
strong possibility that some of the eigenvalues can densely populate on certain curves
or even on some regions in the complex plane of the eigenvalue parameter depending
on the dynamical system under consideration. If this happens then continuous spectra
can arise. The analysis then becomes more cumbersome, and, more careful and rig-
orous analyses may be needed. We will not focus on this within this paper. It is one
avenue of research we intend to pursue in the future.

Second important point is about the initial values. The solution vector η(t)’s ele-
ments are related to each other by power relations over the operators whose expecta-
tions are under consideration. Thus we can expect to see similar relations amongst their
initial values. Whether this relationship will exist depends on the initial conditions and
existence of similar relationships between elements of at least one eigenvector. It is
possible that at least one eigenvector possesses such a property. If the initial value vec-
tors are in the subspace of such eigenvectors, then the problem under consideration is
fluctuation free. Otherwise a mathematical fluctuation analysis should be conducted.
There is seminal work on this topic by the research group of the second author of this
paper [9–12].

Another striking property is the number of the independent parameters in the Ma-
claurin series coefficients. Of course, finite and small number of parameters will facil-
itate the analysis. This happens when the f functions are restricted to multinomials
and especially second degree multinomials. A couple of papers [13,14] by the second
author of current paper put light on this issue. It is shown that all first order sets of
ODEs can be converted to first order sets of ODEs but this time with the second degree
multinomial right hand side functions.

In the case of folarr interpretation, the situation is different. Although there have
been many important developments [15–20], generally, all efforts are focused on get-
ting a multilinear singular value decomposition (SVD). This is primarily because of
the utility of traditional SVD in ordinary linear algebra and well known methods such
as principal component analysis. While this framework is useful, it is important to
consider novel decomposition approaches that are more appropriate for the discussion
at hand. These approaches are lead by the group of the second author and are based
on High Dimensional Model Representation and Enhanced Multivariance Product
Representation [21–26].

For the current section, we do not intend to go beyond this level of information
about probabilistic evolution.
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4 Application possibilities for dynamical causal modeling of neuroscience

This work is largely motivated by questions of connectivity and causality as they are
conceptualized in neuroscience. In this field, one of the most prominent approaches is
Dynamic Causal Modelling [27,28]. In this framework, the main goal is to estimate
model parameters and use these parameters to describe and compare the temporal
causality in the system. These quantitative findings are used to make qualitative infer-
ences about human brain function and organization. In fact, the first two authors of
this paper have been developing efficient algorithms for estimation within this frame-
work [29,30]. In this section, we expand upon this previous work and consider the
possibility of stability analysis in the context of Dynamic Causal Modeling.

We focus on the quadratic dynamic causal modeling as being the simplest nonlinear
form in vector format

ż(t) =
⎛

⎝A +
m1
∑

i=1

ui (t)Bi +
m2
∑

j=1

z j (t)C j

⎞

⎠ z(t)+ Ru(t) (20)

where z(t) denotes an n1-element vector and characterizes the considered system’s
state while u(t) stands for an n2-element temporally varying vector and reflects the
influence of external agents on the system. A, Bi s, and Ci s are all square matrices
of n1 × n1 type. On the other hand R denotes an n1 × n2 type rectangular matrix.
These matrices are not derived based on theory, in that sense they are exploratory.
These matrices are to be estimated by using data obtained from certain experimenta-
tions. We are not going to focus on how those entities are estimated here. However,
interested readers can read the proceedings papers of first two authors that describe
the estimation procedure [29,30].

We can now consider the probabilistic evolution underlying the system defined by
(20). The ODEs in this set of equations are quadratic with respect to the unknown vec-
tor. This feature makes the Evolution Matrix rather simple. However, the presence of
a temporal function structure by u(t) makes the equations nonautonomous. This lack
of autonomy can be removed via increasing the number of unknowns. However, this
possibly brings high level nonlinearity to the u(t) dependent terms. The convergence
of the truncations in probabilistic evolution may be negatively influenced from this.

On the other hand, we can divide the evolution’s time interval to appropriately cho-
sen subintervals and then approximate u(t) by lower degree splines. This is followed
by autonomization of the equations for each subinterval and then what we have told
in the previous section can be applied on the resulting equations. This enormously
decreases the number of parameters in the probabilistic evolution and very high level
of convergence can be achieved. It also becomes possible to make an efficient stability
analysis enabling us for better characterization of the system under consideration. We
believe that certain applications of these ideas will be attempted pretty soon.

The concept of stability in neuroscience is in fact quite elusive. One of the primary
reasons for this is that there is no functional description of human brain function which
is universal. The absence of such a representation makes it impossible to have a mean-
ingful and canonical analysis of the overall stability of the system that is generalizable.
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Furthermore, since brain function is heavily situated and dependent on the context in
which it operates, the equations that characterize the functioning of the system become
nonautonomous making it impossible to use traditional linear algebraic approaches
to analysis of the system’s stability. As it is described in the previous paragraph, the
framework described in this and the companion paper makes it possible to analyze the
stability of the nonautonomous dynamical systems that are often used to characterize
causality and effective connectivity in the human brain.

5 Concluding remarks

This paper is the final portion of the theoretical framework that we propose and de-
scribe. Specifically, in this paper, we emphasized the underlying phenomenological
intuition and provided a meaningful description of the characteristics of probabilistic
evolutions.

The most important contribution seems to be that all explicit ODEs with initial
conditions have infinite linear representations which we named probabilistic evolu-
tion equations (PEE). We believe that this is a stunning finding and opens a field rife
with potential for exploration. Furthermore, this framework can be used to explain
theoretical puzzles in multiple disciplines, therefore casting fruitful bridges for the
interdisciplinary cross pollination of ideas, principles and methods. We will continue
this line of work investigating ways in which one can reach similar conclusions to those
introduced in this paper using nonprobabilistic tools. It is ironic that intuitions and
methods developed to study extremely micro level phenomena can inform and guide
investigations of macro level phenomena as human brain function and experience. We
believe that a number of important developments using this theoretical framework are
at the horizon.
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